metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Waldemar Maniukiewicz

Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland

Correspondence e-mail: wmaniuk@p.lodz.pl

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.011 Å R factor = 0.038 wR factor = 0.087 Data-to-parameter ratio = 9.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title complex, $[CuCl_2(C_7H_6N_2S)_2]$, contains a Cu centre with a distorted square-planar coordination geometry, involving two Cl ligands and two endocyclic N atoms from the thiazole moieties [Cu-Cl = 2.275 (2) and 2.297 (2) Å, and Cu-N = 1.986 (5) and 1.988 (5) Å]. The amino groups participate in intra- and intermolecular $N-H \cdots Cl$ hydrogen bonds, with $N \cdots Cl$ distances in the range 3.202 (6)-3.316 (6) Å.

Comment

Aminothiazolines are perceived as an important type of S,Ncontaining heterocyles (Raper, 1994). Usually, 2-substituted derivatives of 1,3-benzothiazole (2–X–btz; where X is NH₂, CH₃, Cl or S) act as σ -monodentate ligands through the ring N atom (Giusti & Peyronel, 1982). The coordination of 2-aminobenzothiazole (2-abtz) to the M^{II} ions of Co (Macíček *et al.*, 1987), Zn (Usman *et al.*, 2003) and Cu (Sieroń & Bukowska-Strzyżewska, 1999, 2000) has been studied thus far, and those studies confirm that heterocyclic nitrogen-bonded, rather than sulfur-bonded, complexes are found.

This paper reports the synthesis and crystal structure of a new copper(II) halide complex with 2-abtz, *trans*-bis(2-amino-1,3-benzothiazole- κN^3)dichlorocopper(II), (I) (Fig. 1), which consists of discrete neutral molecules. These molecules are almost centrosymmetric. The copper centre is coordinated by two Cl ligands and two endocyclic N atoms from the thiazole

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved View of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Received 3 February 2004 Accepted 18 February 2004 Online 28 February 2004 moieties [Cu-Cl = 2.275 (2) and 2.297 (2) Å, and Cu-N =1.986 (5) and 1.988 (5) Å]. The amino N atoms are not involved in the Cu coordination. Tetrahedral distortion of the square-planar coordination is observed with a tetrahedrality angle θ (Holm & O'Connor, 1971) of 2.6 (2)°. The bond lengths in the 2-abtz ring system (Table 1) are normal (Allen et al., 1987). Due to the pronounced delocalization in the S-C=N fragment of the thiazole ring, the S1-C1 [1.742 (7) Å] and S11-C11 [1.733 (7) Å] bonds are slightly shorter than S1-C7 [1.751 (7) Å] and S11-C17 [1.752 (6) Å]. Also, the bond angles around the endocyclic S atoms are in agreement with the literature values for the geometry around an endocyclic S atom $[C1-S1-C7 = 89.6 (3)^{\circ} \text{ and } C11-S11-C17 =$ $89.9 (3)^{\circ}$]. The ligands are planar, with the angles between the mean planes calculated through the five- and six-membered rings of each ligand being 2.4 (3) and 3.4 (3) $^{\circ}$. The ligands are almost parallel, with an interplanar angle of $3.8 (2)^{\circ}$. The amino groups are coplanar with the attached thiazole planes. In the crystal packing, each amino group is involved in intraand intermolecular $N-H \cdots Cl$ hydrogen bonds (Table 2). The N2-H2···Cl1ⁱ and N12-H12···Cl2ⁱⁱ hydrogen bonds interconnect the molecules into chains along the a direction (Fig. 2).

Experimental

The title complex was prepared by addition of 0.001 mol of CuCl₂·2H₂O to a warm solution containing 0.001 mol of ligand in 50 ml of ethanol. The resulting solution was filtered and allowed to cool. Slow evaporation deposited dark-brown crystals analyzed as CuCl₂($C_7H_6N_2S$)₂. Analysis found: C 38.20, N 13.02, H 2.93%; calculated: C 38.67, N 12.88, H 2.78%.

Crystal data

$[CuCl_2(C_7H_6N_2S)_2]$	$D_m = 1.75 (3) \text{ Mg m}^{-3}$
$M_r = 434.87$	D_m measured by by flotation
Monoclinic, P2 ₁	Mo K α radiation
$a = 6.4430 (10) \text{\AA}$	Cell parameters from 15
b = 13.032(3)Å	reflections
c = 9.987 (2) Å	$\theta = 10.0 - 15.0^{\circ}$
$\beta = 106.85 \ (2)^{\circ}$	$\mu = 1.96 \text{ mm}^{-1}$
$V = 802.6 (3) \text{ Å}^3$	T = 293 K
Z = 2	Needle, brown
$D_x = 1.799 \text{ Mg m}^{-3}$	$0.4 \times 0.1 \times 0.1 \text{ mm}$
Data collection	
Siemens P3 diffractometer	$R_{\rm int} = 0.026$
ω –2 θ scans	$\theta_{\rm max} = 27.6^{\circ}$
Absorption correction: ψ scan	$h = -8 \rightarrow 8$
(North et al., 1968)	$k = 0 \rightarrow 16$
$T_{\min} = 0.721, \ T_{\max} = 0.822$	$l = 0 \rightarrow 12$
2096 measured reflections	3 standard reflections
1933 independent reflections	every 50 reflections
1649 reflections with $I > 2\sigma(I)$	intensity decay: none
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0445P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 0.5431P]
$wR(F^2) = 0.087$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
1933 reflections	$\Delta \rho_{\rm max} = 0.96 \ {\rm e} \ {\rm \AA}^{-3}_{\circ}$

 $\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Absolute structure: Flack (1983)

Flack parameter = 0.08 (3)

Figure 2

Diagram showing hydrogen bonds in (I) as dashed lines. [Symmetry codes: (a) 1 + x, y, z; (b) x - 1, y, z, corresponding to (ii) and (i), respectively, in Table 2.]

Table 1

Selected geometric parameters (Å, °).

Cu-Cl1	2.2747 (19)	Cu-N1	1.986 (5)
Cu-Cl2	2.2969 (19)	Cu-N11	1.988 (5)
Cl1-Cu-Cl2	177.58 (7)	Cl2-Cu-N1	89.98 (19)
Cl1-Cu-N1	89.34 (19)	Cl2-Cu-N11	89.41 (19)
Cl1-Cu-N11	91.32 (19)	N1-Cu-N11	178.7 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H1···Cl1	0.86	2.74	3.266 (6)	121
$N2 - H2 \cdot \cdot \cdot Cl1^i$	0.86	2.48	3.265 (6)	152
$\begin{array}{l} N12-H11\cdots Cl2\\ N12-H12\cdots Cl2^{ii} \end{array}$	0.86 0.86	2.64 2.54	3.202 (6) 3.316 (6)	124 151

Symmetry codes: (i) x - 1, y, z; (ii) 1 + x, y, z.

All H atoms were placed in calculated positions and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: P3 Software (Siemens, 1993); cell refinement: P3 Software; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Giusti, A. & Peyronel, G. (1982). Spectrochim. Acta A, 38, 975–979.
- Holm, R. H. & O'Connor, M. J. (1971). Prog. Inorg. Chem. 14, 253-258.
- Macíček, J., Davarska, G. H. & Davarski, K. A. (1987). Z. Kristallogr. 180, 157– 164.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Raper, E. S. (1994). Coord. Chem. Rev. 129, 91-151.
- Sheldrick, G. M. (1990). *SHELXTL/PC Users Manual*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1993). P3 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sieroń, L. & Bukowska-Strzyżewska, M. (1999). Acta Cryst. C55, 167-169.
- Sieroń, L. & Bukowska-Strzyżewska, M. (2000). Acta Cryst. C56, 19-21.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Usman, A., Fun, H.-K., Chantraprommna, S., Zheng, M., Chen, Z. F., Tang, Y. Z., Shib, S. M. & Liang, H. (2003). *Acta Cryst.* E**59**, m41–m43.

H-atom parameters constrained

209 parameters